Rapid microalgal metabolism of selenate to volatile dimethylselenide.
نویسندگان
چکیده
An axenically cultured isolate of single-celled freshwater microalgae (Chlorella sp.) metabolized toxic selenate to volatile dimethylselenide at exceptionally high rates when transferred from mineral-nutrient solution to water for 24 h. The Se-volatilization rates were orders of magnitude higher than those similarly measured for wetland macroalgae and higher plants. Ninety percent of 20 micro m selenate supplied to the microalgae incubated without nutrients was removed through accumulation and volatilization. Additions of 1 mm sulphate but not nitrate, inhibited Se accumulation and volatilization so that only 1.8% of the supplied selenate was removed. The microalgae cultured in nutrient solution without sulphate showed increased 35S-sulphate-transporter activity. Selenium K-edge X-ray absorption spectroscopy of selenate-treated microalgae cultured with or without mineral nutrients, showed that 87% of the selenate accumulated during 24 h was reductively metabolized to intermediate organic compounds such as selenomethionine and selenocystine. This is in complete contrast to higher plants that show very limited reduction of selenate. It appears that high rates of Se accumulation and volatilization by the sulphate-deprived microalgae resulted from reduced competition with chemically analogous sulphate ions for selenate uptake via up-regulated sulphate/selenate transporters and rapid reductive metabolism of selenate. Hyper-volatilization of selenate by microalgal cells may provide a novel detoxification response.
منابع مشابه
Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brassica juncea.
Selenium (Se) can be assimilated and volatilized via the sulfate assimilation pathway. Cystathionine-gamma-synthase (CGS) is thought to catalyze the synthesis of Se-cystathionine from Se-cysteine, the first step in the conversion of Se-cysteine to volatile dimethylselenide. Here the hypothesis was tested that CGS is a rate-limiting enzyme for Se volatilization. Cystathionine-gamma-synthase from...
متن کاملOverexpression of cystathionine-c-synthase enhances selenium volatilization in Brassica juncea
Selenium (Se) can be assimilated and volatilized via the sulfate assimilation pathway. Cystathionine-c-synthase (CGS) is thought to catalyze the synthesis of Se-cystathionine from Se-cysteine, the first step in the conversion of Se-cysteine to volatile dimethylselenide. Here the hypothesis was tested that CGS is a rate-limiting enzyme for Se volatilization. Cystathionine-c-synthase from Arabido...
متن کاملAn essential role of s-adenosyl-L-methionine:L-methionine s-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-L-selenium- methionine, the precursor of volatile selenium.
Selenium (Se) phytovolatilization, the process by which plants metabolize various inorganic or organic species of Se (e.g. selenate, selenite, and Se-methionine [Met]) into gaseous Se forms (e.g. dimethylselenide), is a potentially important means of removing Se from contaminated environments. Before attempting to genetically enhance the efficiency of Se phytovolatilization, it is essential to ...
متن کاملRate-limiting steps in selenium assimilation and volatilization by indian mustard
Se can be accumulated by plants and volatilized to dimethylselenide, providing an attractive technology for Se phytoremediation. To determine the rate-limiting steps in Se volatilization from selenate and selenite, time- and concentration-dependent kinetics of Se accumulation and volatilization were studied in Indian mustard (Brassica juncea). Time-dependent kinetic studies showed that selenate...
متن کاملMethylation of inorganic and organic selenium by the bacterial thiopurine methyltransferase.
Escherichia coli cells expressing the tpm gene encoding the bacterial thiopurine methyltransferase (bTPMT) are shown to methylate selenite and (methyl)selenocysteine into dimethylselenide (DMSe) and dimethyldiselenide (DMDSe). E. coli cells expressing tpm from a gene library cosmid clone (harboring a Pseudomonas syringae insert of about 20 kb) also methylated selenate into DMSe and DMDSe. bTPMT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant, cell & environment
دوره 26 6 شماره
صفحات -
تاریخ انتشار 2003